TGF-β1/ALK5-induced monocyte migration involves PI3K and p38 pathways and is not negatively affected by diabetes mellitus.
نویسندگان
چکیده
AIMS Monocytes contribute to arteriogenesis by infiltration to sites of collateral growth and subsequent production and release of growth factors. Transforming growth factor β1 (TGF-β1) mediates monocyte motility and stimulates arteriogenesis. TGF-β1 signalling mechanisms mediating monocyte motility are unknown so far. Moreover, the influence of cardiovascular risk factor diabetes on TGF-β1-induced monocyte migration remains to be elucidated. METHODS AND RESULTS Stimulation of primary human monocytes with TGF-β1 endorsed phosphorylation of v-Akt murine thymoma viral oncogene analogues protein (AKT), p38, and extracellular signal-related kinase 1/2 (ERK1/2), besides the activation of the SMA/MAD homologues protein (SMAD) pathway. Inhibition of the TGF-βtype 1 receptor, alias activin receptor-like kinase 5 (ALK5), hindered monocyte chemotaxis towards TGF-β1 and TGF-β1-activated downstream signalling cascades. Individual genetic knock-downs for receptor-regulated SMAD2 and SMAD3 did not affect monocyte migration to TGF-β1. Inhibition of phosphoinositide 3 kinase (PI3K) activity, but not AKT, diminished both basal and TGF-β1-mediated monocyte motility. TGF-β1-induced monocyte chemotaxis did not rely on ERK1/2, but rather on p38. Remarkably, TGF-β1 was able to stimulate chemotaxis of diabetic monocytes. CONCLUSION The current study provides novel insights into the molecular mechanisms of TGF-β1-induced monocyte migration, requiring ALK5 kinase activity and signalling via PI3K and p38. TGF-β1-driven monocyte motogenicity is fully functional in diabetic conditions, which is in sharp contrast to the impaired chemotactic responses to certain other arteriogenic cytokines. Therefore, TGF-β1 may be a promising candidate for endogenously and exogenously stimulating collateral growth in diabetic patients.
منابع مشابه
Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats
Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.Materials and Methods:<...
متن کاملThe Role of PAR2 in TGF-β1-Induced ERK Activation and Cell Motility
BACKGROUND Recently, the expression of proteinase-activated receptor 2 (PAR2) has been shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell migration by transforming growth factor (TGF)-β1. However, it is not known whether activation of non-SMAD TGF-β signaling (e.g., RAS-RAF-MEK-extracellular signal-regulated kinase (ERK) signaling) is required for c...
متن کاملProteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5
Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and met...
متن کاملHuman Leukocyte Antigen-G Expression on Dendritic Cells Induced by Transforming Growth Factor-β1 and CD4+ T Cells Proliferation
Background: During antigen capture and processing, mature dendritic cells (DC) express large amounts of peptide-MHC complexes and accessory molecules on their surface. DC are antigen-presenting cells that have an important role in tolerance and autoimmunity. The transforming growth factor-beta1 (TGF-β1) cytokine has a regulatory role on the immune and non-immune cells. The aim of this study is ...
متن کاملA PPAR-Gamma Agonist Rosiglitazone Suppresses Fibrotic Response in Human Pterygium Fibroblasts by Modulating the p38 MAPK Pathway.
Purpose Fibroblast activation may play an important role in pterygium progression. Synthetic peroxisome proliferator-activated receptor γ (PPAR-γ) ligands have been shown to be effective antifibrotic agents against transforming growth factor β1 (TGF-β1) induced fibrosis in several tissues. We aimed to investigate the antifibrotic effects of the PPAR-γ ligand rosiglitazone in pterygium fibroblas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 91 3 شماره
صفحات -
تاریخ انتشار 2011